Category: 2019

Prospect of Thiazole-based gamma-Peptides Foldamers in Enamine Catalysis: Exploration of the Nitro-Michael Addition

Chemistry. 2019 May 28;25(30):7396-7401. doi: 10.1002/chem.201901221. Epub 2019 May 7.

Aguesseau-Kondrotas J, Simon M, Legrand B, Bantigniès JL, Kang YK, Dumitrescu D, Van der Lee A, Campagne JM, de Figueiredo RM, Maillard LT.

Abstract

As three-dimensional folding is prerequisite to biopolymer activity, complex functions may also be achieved through foldamer science. Because of the diversity of sizes, shapes and folding available with synthetic monomers, foldamer frameworks enable a numerous opportunities for designing new generations of catalysts. We herein demonstrate that heterocyclic γ-peptide scaffolds represent a versatile platform for enamine catalysis. One central feature was to determine how the catalytic activity and the transfer of chiral information might be under the control of the conformational behaviours of the oligomer.

Synthesis of Peptide–Adenine Conjugates as a New Tool for Monitoring Protease Activity

Eur. J. Org. Chem. January 2019: 176-183. doi:10.1002/ejoc.201801490.

Masurier, N. , Soualmia, F. , Sanchez, P. , Lefort, V. , Roué, M. , Maillard, L. T., Subra, G. , Percot, A. and El Amri, C.

Abstract

We took advantage of the powerful adenine SERS (Surface Enhanced Raman Spectroscopy) probe to design peptide–adenine conjugates as candidates for use as serine protease substrates. Whereas the direct introduction of the peptide sequence on the adenine exocyclic N6 amine gave an imidazopurinone derivative, the introduction of an aminoethyl linker between the adenine group and the peptide chain led to the expected candidate probes. These potential substrates were then evaluated for monitoring the hydrolytic activity of trypsin, used as a model protease, by HPLC and by SERS. We demonstrated that the Boc–VPR–adenine conjugate is a substrate of trypsin and constitutes a good starting point to design optimized substrates to monitor protease activity by SERS.