Category: B. Legrand

Synthesis of [1,2,4]Triazolo[4,3- a]piperazin-6-ones: An Approach to the Triazole-Fused Ketopiperazine Scaffold

Org Lett. 2018 Jun 1;20(11):3250-3254. doi: 10.1021/acs.orglett.8b01112. Epub 2018 May 15.

Ben Haj Salah K, Legrand B, Bibian M, Wenger E, Fehrentz JA, Denoyelle S.

Abstract

A stereoconservative synthesis to access the triazole-fused ketopiperazine (TKP) scaffold is presented. This underexplored platform offers a wide range of structural modulations with several points of diversity and chiral centers. A series of [1,2,4]triazolo[4,3- a]piperazin-6-ones was synthesized from optically pure dipeptides. The methodology was then successfully applied to access the pyrrolo[1,2- a]triazolo[3,4- c]piperazin-6-one tricycle. Importantly, the crystal structures of representative TKPs confirmed that the configuration of the chiral centers was controlled during the synthetic route and facilitated description of the orientation of the substituents depending on their nature and position on the TKP scaffold.

Selectivity Modulation and Structure of α/aza-β3 Cyclic Antimicrobial Peptides

Chemistry 2018 Apr 20;24(23):6191-6201. doi: 10.1002/chem.201800152. Epub 2018 Mar 26.

 Simon MLaurencin M, Fleury Y, Baudy-Floc’h M, Bondon A, Legrand B.

Abstract

Potent and selective antimicrobial cyclic pseudopeptides (ACPPs) mixing α- and aza-β3 -amino acids were developed. Cyclopseudopeptide sequences were designed to investigate the impact of some intrinsic molecular parameters on their biological activities. Fine changes in the nature of the side chains strongly modulated the selectivity of the ACPPs with regard to hemolysis versus antimicrobial activity. The conformational preference of such compounds in various media was extensively studied, and the typical structure of cyclic α/aza-β3 -pseudopeptides is described for the first time. Interestingly, such scaffolds are stabilized by successive inverse γ- and N-N turns (hydrazino turns), a unique feature due to the aza-β3 residues. The α-amino acid side chains form a cluster on one face of the ring, while the aza-β3 -amino acid side chains are projected around the ring in the equatorial orientation. Such structural data are particularly valuable to fine-tune the bioactivity of these ACPPs by a structure-based approach.

Indoloazepinone-Constrained Oligomers as Cell-Penetrating and Blood-Brain Barrier Permeable Compounds

Chembiochem. 2018 Jan 29. doi: 10.1002/cbic.201700678. [Epub ahead of print]

Van der Poorten O, Legrand B, Vezenkov L, Garcia-Pindado J, Bettache N, Knuhtsen A, Sejer Pedersen D, Sanchez-Navarro M, Martinez J, Teixido M, Garcia M, Tourwe D, Amblard M, Ballet S.

Abstract

Non-cationic and amphipathic indoloazepinone-constrained (Aia) oligomers have been synthesized as new vectors for intracellular delivery. The conformational preferences of the [L-Aia-Xxx]n oligomers were investigated using circular dichroism and NMR spectroscopy. While Boc-[L-Aia-Gly]2,4-OBn 12-13 and Boc-[L-Aia-β3-h-L-Ala]2,4-OBn 16-17 oligomers were totally or partially disordered, Boc-[L-Aia-L-Ala]2-OBn 14 induced a typical turn stabilized by C5- and C7-membered H-bond pseudo-cycles and aromatic interactions. Boc-[L-Aia-L-Ala]4-OBn 15 exhibited a unique structure with remarkable T-shaped pie-stacking interactions involving the indole rings of the four L-Aia residues forming a dense hydrophobic cluster. All the proposed FITC-6-Ahx-[L-Aia-Xxx]4-NH2 oligomers 19-23, with exception of FITC-6-Ahx-[L-Aia-Gly]4-NH2 oligomer 18, were internalized by MDA-MB-231 cells with higher efficiency than the positive references penetratin and Arg8. In parallel, this series of compounds was successfully explored on an in vitro blood-brain barrier (BBB) permeation assay. While no passive diffusion permeability was observed for any of the tested Ac-[L-Aia-Xxx]4-NH2 oligomers in the PAMPA model, Ac-[L-Aia-L-Arg]4-NH2 26 showed significant permeation in the in vitro cell-based human model of the BBB, suggesting an active mechanism of cell-penetration.

C9/12 Ribbon-Like Structures in Hybrid Peptides Alternating α- and Thiazole-Based γ-Amino Acids

Chemistry. 2017 Dec 11;23(69):17584-17591. doi: 10.1002/chem.201704001. Epub 2017 Nov 15.

Bonnel C, Legrand B, Simon M, Martinez J, Bantignies JL, Kang YK, Wenger E, Hoh F, Masurier N, Maillard LT.

Abstract

According to their restricted conformational freedom, heterocyclic γ-amino acids are usually considered to be related to Z-vinylogous γ-amino acids. In this context, oligomers alternating α-amino acids and thiazole-based γ-amino acids (ATCs) were expected to fold into a canonical 12-helical shape as described for α/γ-hybrid peptides composed of cis-α/β-unsaturated γ-amino acids. However, through a combination of X-ray crystallography, NMR spectroscopy, FTIR experiments, and DFT calculations, it was determined that the folding behavior of ATC-containing hybrid peptides is much more complex. The homochiral α/(S)-ATC sequences were unable to adopt a stable conformation, whereas the heterochiral α/(R)-ATC peptides displayed novel ribbon structures stabilized by unusual C9/12 -bifurcated hydrogen bonds. These ribbon structures could be considered as a succession of pre-organized γ/α dipeptides and may provide the basis for designing original α-helix mimics.

Ribbon-like Foldamers for Cellular Uptake and Drug Delivery

Chembiochem 2017 Nov 2;18(21):2110-2114. doi: 10.1002/cbic.201700455. Epub 2017 Sep 22.

Vezenkov LL, Martin V, Bettache N, Simon M, Messerschmitt A, Legrand B, Bantignies JL, Subra G, Maynadier M, Bellet V, Garcia M, Martinez J, Amblard M.

Abstract

Different intracellular delivery systems of bioactive compounds have been developed, including cell-penetrating peptides. Although usually nontoxic and biocompatible, these vectors share some of the general drawbacks of peptides, notably low bioavailability and susceptibility to protease degradation, that limit their use. Herein, the conversion of short peptide sequences into poly-α-amino-γ-lactam foldamers that adopt a ribbon-like structure is investigated. This template is used to distribute critical cationic and/or hydrophobic groups on both sides of the backbone, leading to potent short, cell-permeable foldamers with a low positive-charge content. The lead compound showed dramatically improved protease resistance and was able to efficiently deliver a biologically relevant cargo inside cells. This study provided a simple strategy to convert short peptide sequences into efficient protease-resistant cell-penetrating foldamers.

A General Approach to the Aza-Diketomorpholine Scaffold

Organic Letters, 2017, Volume: 19, Issue: 3, Pages: 492-495, DOI: 10.1021/acs.orglett.6b03656

M. Berthet, B. Legrand, J. Martinez, I. Parrot

Abstract

A stereoconservative three-step synthesis to access to 1,2,4-oxadiazine-3,6-dione is presented. This underexplored platform could be considered as a constrained oxy-azapeptide or an aza-diketomorpholine, the methodol. being then successfully applied to produce enantiopure aza-analogs of diketomorpholine natural products. Importantly, the 1st crystal structures were obtained and compared to diketomorpholine and diketopiperazine structures. Finally, a straightforward procedure concerning the coupling of this heterocyclic scaffold with various amino acids to afford original pseudodipeptide analogs was described.

A switchable stapled peptide

Journal of Peptide Science, 2016, Volume: 22, Issue: 3, Pages: 143-148, DOI: 10.1002/psc.2851

A. Kalistratova, B. Legrand, P. Verdie, E. Naydenova, M. Amblard, J. Martinez, G. Subra

Abstract

The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chem.  This reaction has been successfully applied to the synthesis of difficult sequence-contg. peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers.  Herein, we describe a related strategy to facilitate the synthesis and purifn. of a hydrophobic stapled peptide.  The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid.  The α-amino group of serine was protonated during purifn.  Interestingly, when the peptide was placed at physiol. pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.

Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives

RSC Advances, 2016, Volume: 6, Issue: 39, Pages: 32905-32914, DOI: 10.1039/C6RA06075G

C. Echalier, A. Kalistratova, J. Ciccione, A. Lebrun, B. Legrand, E. Naydenova, D. Gagne, J. A. Fehrentz , J. Marie, M. Amblard, A. Mehdi, J. Martinez, G. Subra 

Abstract

We developed a simple and straightforward way to dimerize unprotected peptide sequences that relies on a chemoselective condensation of hybrid peptides bearing a hydroxydimethylsilyl group at a chosen position (either C-ter, N-ter or side-chain linked) to generate siloxane bonds upon freeze-drying. Interestingly, the siloxane bond sensitivity to hydrolysis is strongly pH-dependent. Thus, we investigated the stability of siloxane dimers in different exptl. conditions. For that purpose, 29Si, 13C and 1H NMR spectra were recorded to accurately quantify the ratio of dimer/monomer. More interestingly, we showed that 1H resonances of the methylene and Me groups connected to the Si can be used as sensitive probes to monitor siloxane hydrolysis and to det. the half-lives of the dimers. Importantly, we showed that the dimers were rather stable at pH 7.4 (t1/2 ≈ 400 h) and we applied the dimerization strategy to bioactive sequences. Once optimized, three dimers of the growth hormone releasing hexapeptide (GHRP-6) were prepd. Interestingly, their pharmacol. evaluation revealed that the activity of the dimeric ligands could be switched from agonist to inverse agonist depending on the position of dimerization.

Conformationally Constrained Peptidomimetics as Inhibitors of the Protein Arginine Methyl Transferases

Chemistry – A European Journal, 2016, Volume: 22, Issue: 39, Pages: 14022-14028, DOI: 10.1002/chem.201602518

A. Knuhtsen, B. Legrand, O. Van der Poorten, M. Amblard, J. Martinez, S. Ballet, J. L. Kristensen, D. S. Pedersen 

Abstract

Protein arginine N-Me transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones.  In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non-proteinogenic amino acids, N-alkylation of the peptide backbone, and incorporation of constrained dipeptide mimics.  One of the modified peptides (23) showed an increased inhibitory activity towards several PRMTs in the low μM range and the conformational preference of this peptide was investigated and compared with the original hit using CD and NMR spectroscopy.  Introducing two constrained tryptophan residue mimics (L-Aia) spaced by a single amino acid was found to induce a unique turn structure stabilized by a hydrogen bond and arom. π-stacking interaction between the two L-Aia residues.

FT-IR and NMR structural markers for thiazole-based γ-peptide foldamers

Organic & Biomolecular Chemistry, 2016, Volume: 14, Issue: 37, Pages: 8664-8669, DOI: 10.1039/C6OB01594H

C. Bonnel, B. Legrand, J. L. Bantignies, H. Petitjean, J. Martinez, N. Masurier, L. T. Maillard 

Abstract

In the search of new robust and environmental-friendly anal. methods able to answer quant. issues in pharmacol., we explore liq. chromatog. (LC) assocd. with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biol. matrixes.  The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold std. to measure org. compd. concns. in life science.  As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacol. assays.  The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labeling of the peptide of interest.  Selenium, that is scarcely present in biol. media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chem. and peptide detection specificity.  Applying selenium monitoring by elemental mass spectrometry in pharmacol. is challenging due to the very high salt content and org. material complexity of the samples that produces polyat. aggregates and thus potentially mass interferences with selenium detection.  Hyphenation with a chromatog. sepn. was found compulsory.  Noteworthy, we aimed to develop a straightforward quant. protocol that can be performed in any lab. equipped with a std. macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity.  Significantly, a quantification limit of 57 ng Se L-1 (72 fmol of injected Se) was achieved, the samples issued from the pharmacol. assays being directly introduced into the LC-ICP-MS system.  The established method was successfully validated and applied to the measurement of the vasopressin ligand affinity for its V1A receptor through the detn. of the dissocn. const. (Kd) which was compared to the one recorded with conventional radioactivity assays.